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SUMMARY

An efficient numerical approach for the design of op-
timal aerodynamic shapes is presented in this paper. The
objective of any optimization problem is to find the optimum
of a cost function subject to a certain state equation (Gov-
erning equation of the flow field) and certain side constraints.
As in classical optimal control methods, the present approach
introduces a costate variable (Lagrange multiplier) to evaluate
the gradient of the cost function. High efficiency in reach-
ing the optimum solution is achieved by using a multigrid
technique and updating the shape in a hierarchical manner
such that smooth (low-frequency) changes are done separately
from high-frequency changes. Thus, the design variables are
changed on a grid where their changes produce nonsmooth
(high-frequency) perturbations that can be damped efficiently
by the multigrid. The cost of solving the optimization problem
is approximately two to three times the cost of the equivalent
analysis problem.

LIST OF SYMBOLS

Cp pressure coefficient
F cost function
fk kth shape function
i unit vector inx-direction
j unit vector iny-direction
M1 free stream Mach number
n unit normal
t unit tangent
U1 free stream velocity

yU;L y-coordinate of the upper and lower surface of the
airfoil

� amplitude of shape functions (design variables)
~� direction of change of�

�
U;L

k
components of� (upper and lower surface
amplitudes of thekth shape function)

� circulation
 ratio of specific heats
" magnitude of change of�
� angle of attack
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� � corrected for Mach number
� angular position of a far-field location
� Lagrange multiplier
�k kth component of the gradient ofF
� density
� full velocity potential
�0 target potential
� coefficient of the delta function

1. INTRODUCTION

Analysis of flow fields using computational fluid dy-
namics (CFD) has come a long way. Today, accurate com-
putation of the flow field around realistic aircraft configura-
tions using the Navier Stokes equations with turbulence mod-
eling can be done at affordable cost and reasonable turnaround
time. Design and optimization of aircraft configurations, on
the other hand, is far from this level of maturity. In the
last two decades, many different techniques have been devel-
oped to design aerodynamically better aircraft. These tech-
niques can be classified into three broad categories, namely
inverse design methods, loosely coupled optimization (LCO),
and tightly coupled optimization (TCO).

The inverse design method,1-6 pioneered by Lighthill,
requires a priori knowledge of a desirable pressure or velocity
distribution and some strategy for obtaining a shape that
produces this distribution. The quality of the shape obtained
from the inverse design method is strictly a function of the
distribution it is required to match. Therefore, a weakness
of this approach is its dependence on the experience and
knowledge of the designer to establish desirable velocity or
pressure distributions. In addition, the method does not lend
itself to the imposition of constraints.

In the LCO approach, an analysis code interacts with a
numerical optimization code to find a shape that meets some
design objective (i.e., minimizes some cost function). To
achieve this goal, the analysis problem is solved many times
to find the best combination of perturbations to the design
variables that both minimizes the cost function and satisfies
the constraints. This process is repeated until the cost function
cannot be further reduced. Examples of this approach are
found in Refs. 7-10. The approach can be viewed as a two
part process: an inner loop that finds both a direction and
a step size to update the design variables and an outer loop
that repeats the inner loop until the cost function reaches a
minimum. If each inner-loop pass requiresN solutions of
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the analysis problem (whereN is proportional to the number
of design variables) and the outer loop requiresC iterations
(whereC depends on how far the initial conditions are from a
minimum), then the cost of this approach is approximatelyN
� C times the cost of the analysis problem. The LCO method
can be improved by analytically evaluating the sensitivity
derivatives needed to update the design variables.11 Usually
this requires the inversion of a very large matrix. For three-
dimensional problems, the size of this matrix can render the
method impractical with current computer technology.

Even greater efficiency can be achieved through a TCO
method. With this method, the optimization and analysis
problems are attacked simultaneously. The TCO problem
requires the solution of an adjoint problem equivalent in
complexity to the analysis problem. This results in an overall
cost that is proportional to 2C. The factor of 2 results from
doubling the number of equations that govern the problem.
This approach has been discussed in Ref. 12. Even this
procedure can become prohibitively expensive for practical
aerodynamic design and optimization problems.

The One-Shotmethod13,14 overcomes the unacceptable
cost of the existing design and optimization procedures. It
brings the cost of design and optimization to the same order
as that of a single analysis. High performance is achieved by
exploiting the property of the partial differential equations (as-
sociated with the scales (frequency) of the errors) which gov-
ern the physics of the flow and by the efficient damping out
of high-frequency error components with multigrid. Consider
the subsonic flow over an airfoil profile. The change in the
shape of the profile of a given wavelength produces changes of
the same wavelength in the solution. These changes penetrate
into the flow field only up to a distance that is proportional
to the wavelength of the perturbation. Thus, while the high-
frequency changes in the shape of the airfoil produce changes
in the solution that are of high frequency and remain local to
the neighborhood of the airfoil, the smooth (low-frequency)
changes in the shape produce smooth changes to the solution
and are global in nature. Typically, any relaxation scheme
quickly damps the high-frequency components of the error
on a grid. Multigrid efficiently damps the whole spectrum of
error components by relaxing the governing equations on a
sequence of grids of varying resolution.

Therefore, the basic idea of theOne-Shotmethod is to
change the shape of the airfoil profile in a hierarchical man-
ner such that smooth changes are made separately from high-
frequency changes. Because each of these changes involves a
different scale, the governing equation of the flow field can be
solved efficiently on grids of appropriate resolution. Thus, the
flow field due to smooth changes in the shape of the airfoil is
solved on coarse grids, and the flow field due to increasingly
high-frequency shape changes is solved on increasingly fine
grids. This breaks the optimization procedure into a sequence
of suboptimization problems, each of a given scale; therefore,
the problem is well conditioned. The resulting optimization
procedure is very efficient because the work on a particular
scale is done on the appropriate grid. (Ill conditioning results
from working on many scales simultaneously.) TheOne-Shot
method is implemented within a full approximation scheme
(FAS) full multigrid (FMG) algorithm. The solution process
starts on the coarsest grid, where only the smooth component
of the shape function is updated. This solution is interpolated
to the next finest grid, where it serves as an initial approxi-
mation of the solution on that grid. This process is continued
until the finest grid is reached. Thus, smooth (low-frequency)
shapes are updated on coarse grids; high-frequency shapes

are updated on finer grids. The fine- to coarse-grid transfers
are designed such that the optimization problem at each grid
level is driven by the fine-grid residual. The resulting algo-
rithm has an estimated overall cost that ranges from two to
three times the cost of the analysis problem.

The successful application of theOne-Shotmethod to
the aerodynamic shape design problem was first reported in
Ref. 14. The capability of the method was demonstrated by
using the small-disturbance potential equation as the govern-
ing equation of the flow field. However, in that study, the
issue of updating the grid was avoided. In the present study,
the full potential equation is used as the governing equation;
hence, the grid must be updated as the shape changes. In this
work, the adjoint equation and the corresponding gradient of
the cost function are derived. The solution procedure and
some typical results are also presented.

2. CONSTRAINED MINIMIZATION PROBLEM

A general constrained minimization problem can be
stated as

min
b;Q

F [b;Q(b)] (2.1)

subject to

R[b;Q(b)] = 0 (2.2)

and
Cn[b;Q(b)] � 0 (n = 1; 2; ::: ; N) (2.3)

whereF is the cost function;b the design variables; andQ,
the state variables. The set of state equations is denoted byR

and the side constraints are denoted byCn; Cn is referred to
as a side constraint because the state equation is considered
to be the primary constraint of the problem.

In aerodynamic minimization problems, the cost func-
tion is, for example, the drag coefficientCd or the ratio of
drag to lift Cd=Cl . The design variables are, typically, the
shape parameters that define the shape of the body in the
flow field. The state equations are the governing equations
of the flow field and their boundary conditions. Depending
on the level of fidelity of the mathematical model, the gov-
erning equations are the Navier-Stokes equations, the Euler
equations, or the potential equations. The side constraints are
either geometric constraints like the maximum thickness of
the airfoil section, the volume of the wing, or aerodynamic
constraints like maximum lift (max Cl).

2.1 The Necessary Conditions

The objective of the minimization problem is to findb�

and the correspondingQ� such thatF (b�;Q�) is a minimum
and the state equations and the side constraints are satisfied.
A necessary condition forb� to be at a minimum is

rbF (b�;Q�) = 0 (2.4)

where

rbF �
@F

@b
+

�
dQ

db

�T
@F

@Q
(2.5)

(rbFwill be referred to as the gradient ofF ). This necessary
condition can be proved by contradiction as follows. The
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Taylor-series expansion ofF in the neighborhood ofb� and
Q� can be written as

F
�
b
� + "~b;Q� + " ~Q

�
= F (b�;Q�) + "~bTrbF (b�;Q�)

+O
�
"2
�

(2.6)
where" is a positive scalar and~b is a vector;"~b is the change
in b�, and" ~Q is the corresponding change inQ� that satisfies
the state equations and the side constraints. IfrbF (b�;Q�)
is nonzero, then a vector~b must exist for which

~bTrbF (b�;Q�) < 0 (2.7)

(e.g.,~b = �rbF (b
�;Q�)). A vector~b that satisfies (2.7) is

called a descent direction atb�. Given any descent direction
~b, a positive scalar�" exists such that for all positive" that
satisfy " � �",

"~bTrbF (b�;Q�) +O
�
"2
�
< 0 (2.8)

If we substitute (2.8) into (2.6), then

F
�
b
� + "~b;Q� + " ~Q

�
� F (b�;Q�) (2.9)

for all such". Hence, unlessrbF (b�;Q�) = 0, the neigh-
borhood ofb� contains points with a lower function value
thanF (b�;Q�). The other necessary conditions that must be
satisfied at the minimum are the state equations and the side
constraints.

2.2 The Minimization Process

At some initialb, any minimization process seeks to find
a descent direction~b and a step size" in which to changeb
such that

F
�
b+ "~b;Q + " ~Q

�
� F (b;Q) (2.10)

where " ~Q is the corresponding change inQ that satisfies
the state equations and the side constraints. This process is
repeated several times until a minimum is reached.

The Descent Direction

A descent direction~b can be determined as follows. The
Taylor series expansion ofF aboutb andQ can be written as

F
�
b+ "~b;Q + " ~Q

�
= F (b;Q) + "~bTrbF (b;Q)

+O
�
"2
� (2.11)

whererbF is given by (2.5). Equation (2.11) clearly shows
that if

~b = �
rbF (b;Q)

jrbF (b;Q)j
(2.12)

then (2.10) is satisfied. Equality occurs in (2.10) at the
minimum whenrbF (b�;Q�) = 0, whereb� is the optimum
value of the design variables andQ� is the corresponding
value of the state variables that satisfies the state equations.
Therefore, to obtain the descent direction, the gradient ofF
must be evaluated. The efficient and accurate evaluation of
this gradient is one of the important but difficult steps in any
minimization scheme. The formula for the gradient ofF ,
given by (2.5), is not a very useful one because, in general,
dQ=db is difficult to determine . However, by using the
adjoint method, this difficulty can be easily overcome. This
method is outlined in section 2.3.

The Step size

Once the descent direction has been determined, the next
step is to evaluate the step size". One approach is to do a
line search. The objective of the line search is to find" such

that
rbF

�
b + "~b;Q+ " ~Q

�2 is a minimum. That is,

@
rbF

�
b+ "~b;Q + " ~Q

�2
@"

= 0 (2.13)

If we use a Taylor series expansion, then we can write

rbF
�
b+ "~b;Q + " ~Q

�2
=
rbF (b;Q) + "r2

bF (b;Q)~b+ "2C +O
�
"3
�2

=[rbF (b;Q)]TrbF (b;Q) +2"[rbF (b;Q)]Tr2

bF (b;Q)~b

+ "2
n
~bT

�
r2

bF (b;Q)
�T
r2

bF (b;Q)~b+ 2[rbF (b;Q)]TC
o

+O
�
"3
�

(2.14)
whereC denotes theO

�
"2
�

term of the expansion. Note that
r2

bF includes the variation with respect toQ. If we set the
derivative with respect to" on the right-hand side of (2.14)
equal to 0 and solve for", then

" =�
[rbF (b;Q)]Tr2

bF (b;Q)~b
~bT [r2

bF (b;Q)]
T
r2

bF (b;Q)~b+ 2[rbF (b;Q)]TC

+O
�
"2
�

(2.15)
Near the minimum, becauserbF is small, the second term
in the denominator is negligible in comparison with the first
term; hence, it is dropped. Therefore, if we also neglect the
O
�
"2
�

terms in (2.15), then the step size becomes

" = �
[rbF (b;Q)]Tr2

bF (b;Q)~b
~bT [r2

bF (b;Q)]
T
r2

bF (b;Q)~b
(2.16)

wherer2

bF is a symmetric matrix and is often referred to
as the Hessian. Computation of the Hessian is expensive;
the cost is proportional to the number of design variables.
However,r2

bF ~b can be evaluated relatively easily with finite
differences as follows:

r2

bF (b;Q)~b =
rbF

�
b+ �"~b;Q + �" ~Q

�
�rbF (b;Q)

�"
(2.17)

where �" is a trial perturbation. To find the step size, the
design variables are perturbed with an arbitrarily small�", and
the new values of the state variables that satisfy the state
equations and the side constraints are determined. Next, the

new gradientrbF
�
b+ "~b;Q + " ~Q

�
is evaluated, followed

by r2

bF (b;Q)~b. Then, the step size is determined with
(2.16).
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2.3 The Adjoint Method

As stated earlier, the efficient and accurate evaluation
the gradient ofF is one of the important but difficult steps
in any minimization scheme. The most elegant way of deter-
mining this gradient is to use the adjoint method. The adjoint
equations, also referred to as the costate equations, can be
derived as follows. In the following derivation and in the rest
of the paper, we assume that no side constraints exist. For a
small change"~b in b and a corresponding change" ~Q in Q
that satisfies the state equations (2.2), we can show that

"~bT
�
@R

@b

�T

+ " ~QT

�
@R

@Q

�T

+O
�
"2
�
= 0 (2.18)

With (2.5), we can write

"~bTrbF = "~bT
@F

@b
+ " ~QT @F

@Q
(2.19)

where
~Q =

dQ

db
~b (2.20)

If we add a term, which is the product of (2.18) and an
arbitrary multiplier�, to (2.19), then we get

"~bTrbF = "~bT
@F

@b
+ " ~QT @F

@Q

+ "

"
~bT

�
@R

@b

�T

+ ~QT

�
@R

@Q

�T
#
�+O

�
"2
�

(2.21)
The arbitrary multiplier� is often referred to as either the La-
grange multiplier, the costate variable, or the adjoint variable.
If we rearrange (2.21), then we get

"~bTrbF = "~bT
"�

@R

@b

�T

�+
@F

@b

#

+ " ~QT

"�
@R

@Q

�T

�+
@F

@Q

#
+O

�
"2
� (2.22)

If we choose� such that

�
@R

@Q

�T

�+
@F

@Q
= 0 (2.23)

then (2.22) becomes

"~bTrbF = "~bT
"�

@R

@b

�T

�+
@F

@b

#
+O

�
"2
�

(2.24)

Equation (2.23) is the set adjoint equations or the costate
equations. The adjoint equations are similar to the linearized
form of the state equations. They include the adjoint boundary
conditions that correspond to the boundary conditions of the
state equations. If we neglect theO

�
"2
�

terms of (2.24), then
the gradient ofF can be written as

rbF =

�
@R

@b

�T

�+
@F

@b
(2.25)

The gradient ofF given by (2.25) is much easier to evaluate
than the one given by (2.5). By introducing the Lagrange
multiplier, the need to evaluate~Q has been eliminated. The

adjoint equations form an additional set of necessary condi-
tions that must be satisfied at the minimum. In summary, the
necessary conditions that must be satisfied at the minimum are

R[b;Q(b)] = 0�
@R

@Q

�T

�+
@F

@Q
= 0

rbF =

�
@R

@b

�T

�+
@F

@b
= 0

(2.26)

The derivation presented above is for a general con-
strained minimization problem. In the following section, the
adjoint equations and the gradient of the cost function are de-
rived for a specific set of state equations and a cost function.

3. DESIGN OF OPTIMAL AIRFOIL SHAPES

The design of optimal airfoil shapes is a constrained
minimization problem. The objective is to find the optimal
shape of the airfoil that will minimize a cost functionF sub-
ject to the state equation of the flow field and side constraints.

3.1 The State Equations

The analysis problem, defined by the state equation, con-
sists of finding the flow over a specified shape for a given
free-stream Mach number and angle of attack. In order to fo-
cus on the optimization procedure, the flow model considered
is the subsonic potential flow over an airfoil profile.

Consider the steady irrotational flow past a two-
dimensional airfoil.15,16 The governing equation of the flow
field, known as the full potential equation, is

div(�r�) = 0 (3.1)

The boundary condition on the airfoil is

r� � n = 0 (3.2)

At infinity the boundary condition is

r� = U1 (3.3)

For the Kutta condition, the circulation� around the airfoil
is such that

the velocity at the trailing edge is �nite and continuous
(3.4)

In these equations,� = �(x; y) is the full velocity potential,
� = �(�) is the density,n is the unit normal, andU1 is the
free-stream velocity. The density� is given by

� =

�
1�

 � 1

2
M

2

1

�
jr�j2 � 1

�� 1

�1

(3.5)

whereM1 is the free-stream Mach number and is the ratio
of specific heats. If� is the angle of attack of the airfoil, then
the free-stream velocity is given by

U1 = U1[cos (�)i+ sin (�)j] (3.6)

wherei andj are the unit vectors in thex andy directions,
respectively.
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Figure 1. Computational domain.

3.2 The Computational Domain

The computational domain is shown in Figure 1. The
interior of the flow field is denoted by
; the upper and lower
surfaces of the airfoil are denoted byU andL, respectively.
The far-field boundary, located at a finite distance from the
airfoil (30 to 50 airfoil chord lengths) is denoted byO. To
impose the Kutta condition around the airfoil, an artificial
boundary or cut that begins at the airfoil and extends to the
far field is introduced. A jump in potential that is equal to�
is allowed across the cut. For convenience, this cut is chosen
to emanate from the trailing edge of the airfoil. The top and
bottom sides of the cut are denoted byT andB, respectively.
The jump across the cut can be written as

�
T � �

B = � (3.7)

The value of the� is determined by requiring that the velocity
perpendicular to the trailing edge bisector be equal to 0 at the
trailing edge. A good approximation for� is given by

� = �
T

t:e: � �
B

t:e: (3.8)

where t:e: refers to the trailing edge of the airfoil (refer to
Appendix C for details). To satisfy mass conservation across
the cut, derivatives of the potential normal to the cut are
required to be continuous.

At the far-field boundary, the circulation modifies the
velocity as follows:

r� � n = U1 � n+
�

2�
r� � n (3.9)

where

� = 2� � tan�1
�p

1�M 2
1
tan �

�
(3.10)

and� is the angular position of a far-field point. For conve-
nience,n is the unit normal on the boundary. The far-field
boundary condition given by (3.9) is consistent with the in-
finity condition stated by (3.3).

3.3 The Design Variables

The airfoil is represented as follows:

y
U =

KX
k=1

�
U

k fk(x)

(0 � x � 1)

y
L =

KX
k=1

�
L

kfk(x)

(3.11)

where�Uk and�Lk are the amplitudes of the shape functionsfk

on the upper and lower surfaces of the airfoil, respectively.
The design variables�k must be determined to obtain the
optimal shape of the airfoil. Let� denote a vector whose
elements are the design variables. That is,

� =
h
�
U

1 ; �
U

2 ; :::;�
U

K ; �
L

1 ; �
L

2 ; :::;�
L

K

i
T

(3.12)

The functionality of the shape functions will be presented
later.

3.4 The Optimization Problem

The model problem chosen is the design of an airfoil
shape that can match a given target potential. Given a target
potential distribution�0 around an airfoil, the objective is to
find � that will minimize

F [�; �(�)] �

Z
U+L

(�� �0)
2d� (3.13)

subject to the state equations, whered�, which is an element
of the airfoil, can be written as

d�2 = dx2 + dy2 (3.14)

Note that the choice of this particular cost function does not
make it an inverse-design problem. Unlike inverse-design
problems, the minimization is done over a finite number of
design variables. This approach also can be used, for ex-
ample, to find the optimal shape of an airfoil that has the
minimumD=L (Drag/Lift) subject to geometric and aerody-
namic constraints.

To make the presentation of the derivation of the adjoint
equations simple and easy to understand, the flow is assumed
to be incompressible (i.e.,M1 = 0); therefore,� = 1. In
this case, the full potential equation reduces to the Laplace
equation. Also, no side constraints are considered in this
derivation. Therefore, the specific optimization problem con-
sidered here is

min
�;�

Z
U+L

(� � �0)
2d� (3.15)

subject to

div(r�) = 0 in 
 (3.16a)

r� � n = 0 on the airfoil (3.16b)

r� � n = U1 �n+
�

2�
r��n in the far �eld (3.16c)

�T � �B = � along the cut (3.16d)

where� is given by (3.8).
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Figure 2. Domain after perturbation.

3.5 The Adjoint Equations

As stated earlier, the objective of the optimization pro-
cedure is to seek a descent direction and a step size in which
the design variables can be changed so that the cost func-
tion is decreased. To determine the descent direction and the
step size, the gradient of the cost function with respect to
the design variablesr�F must be evaluated (refer to section
2.2). As shown in section 2.3 the adjoint method offers an
elegant means of evaluating the gradient. The derivation of
the adjoint equations is presented below.

Let the design variables be perturbed such that

�! �+ "~� (3.17)

where "~� is the change in�; " and ~� are the step size
(magnitude) and direction, respectively, of the change in�.
Figure 2 shows the domain after the perturbation, where�U
and�L denote the upper and lower surfaces, respectively, of the
new airfoil and�
 denotes the new domain. The shape of the
resulting airfoil �y

�U;�L and the corresponding potential�� that
satisfies the governing equation and its boundary conditions
in the new domain can be written as

�y
�U;�L = yU;L + "~yU;L (3.18)

�� = �+ "~� (3.19)

where "~y represents the change in the airfoil shape and"~�
represents the corresponding change in the potential. We can
show from (3.13) that

~�T
r�F =

Z
U

2(� � �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(� � �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(�� �0)
2 yx~yx
1 + y2x

d�

+

Z
U+L

2(�� �0) ~�d�

(3.20)

whereyx = dy=dx andt is the unit tangent (refer to Appendix
A for details). The objective of this derivation is to eliminate
~�, where

~� =
d�

d�
~� (3.21)

From the governing equation and its boundary conditions
(3.16), we can show that

div

�
r~�
�
= 0 in 
 (3.22a)

r~� � n = r(~yr��t)�i on the airfoil (3.22b)

r~� � n =
~�

2�
r��n at the far �eld (3.22c)

~�T � ~�B = ~� along the cut (3.22d)

where
~� = ~�Tt:e: � ~�Bt:e: (3.23)

If we introduce a Lagrange multiplier� and use (3.22a),
then (3.20) can be written as

~�T
r�F =

Z
U

2(�� �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(�� �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(� � �0)
2 yx~yx
1 + y2x

d�

+

Z
U+L

2(� � �0) ~�d�

+

ZZ



div

�
r ~�
�
�d


(3.24)

If we integrate by parts, the last integral can be written as

ZZ



div

�
r ~�
�
�d
 =

ZZ



div(r�) ~�d


�

Z
�

�
�
r~� � n

�
d� +

Z
�

(r� � n)~�d�

(3.25)
where the unit normaln points into the flow field
; d� is
an element on� , which is the path of integration around the
domain
 and can be expressed as

� = L +U+T+O+B (3.26)

If the integrals are split along� into different components and
substituted into (3.24), then we can write

~�T
r�F =

Z
U

2(�� �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(�� �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(� � �0)
2 yx~yx
1 + y2x

d� +

Z
U+L

2(�� �0) ~�d�

+

ZZ



div(r�) ~�d


�

Z
U+L

�
�
r~� � n

�
d� +

Z
U+L

(r� � n)~�d�

�

Z
T+B

�
�
r~� � n

�
d� +

Z
T+B

(r� � n)~�d�

�

Z
O

�
�
r~� � n

�
d� +

Z
O

(r� � n)~�d�

(3.27)
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Becauser~� is continuous across the cut andn points in
opposite directions along the top and bottom boundaries of
the cut, we can writeZ
T+B

�
�
r~� � n

�
d� =

Z
Cut

�
�T � �B

��
r~� � n

�
d� (3.28)

If we assume thatr� is continuous across the cut, then we
can write Z

T+B

(r� � n)~�d� = ~�

Z
Cut

r� � nd� (3.29)

If we use (3.28), (3.29), and (3.22b-d), then equation (3.27)
can be written as

~�T
r�F =

Z
U

2(� � �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(� � �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(�� �0)
2 yx~yx
1 + y2x

d� +

Z
U+L

2(� � �0)~�d�

+

ZZ



div(r�) ~�d


�

Z
U+L

�r(~yr� � t) � id� +

Z
U+L

(r� � n)~�d�

�

Z
Cut

�
�T � �B

��
r~� � n

�
d� + ~�

Z
Cut

r� � nd�

�

~�

2�

Z
O

�(r� � n)d� +

Z
O

(r� � n)~�d�

(3.30)
If we substitute for~� from (3.23) and rearrange, then (3.30)
becomes

~�T
r�F =

Z
U

2(�� �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(� � �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(� � �0)
2 yx~yx
1 + y2x

d� �

Z
U+L

�r(~yr� � t) � id�

+

ZZ



div(r�) ~�d


+

Z
U+L

[r� � n+ 2(�� �0)] ~�d�

+
�
~�Ut:e: � ~�Lt:e:

�0@Z
Cut

r� � nd� �
1

2�

Z
O

�r� � nd�

1
A

+

Z
O

(r� � n)~�d� �

Z
Cut

�
�T � �B

��
r~� � n

�
d�

(3.31)
We choose� such that

div(r�) = 0 in 


r� � n+ 2(�� �0)���(x� xt:e:) = 0 on L

r� � n+ 2(�� �0) + ��(x� xt:e:) = 0 on U

r� � n = 0 in the far �eld

�T � �B = 0 along the cut
(3.32)

where

� =

Z
Cut

r� � nd� �
1

2�

Z
O

�r� � nd� (3.33)

and� denotes the Dirac delta function (t.e. stands for trailing
edge of the airfoil). Equations (3.32) are the adjoint equation
and its boundary conditions (also called the costate equations).
These equations are similar to the linearized state equations.
The size of the system is the same as the size of the state
equations and can be solved with the same technique used to
solve the state equations.

Becausediv(r�) = 0 in 
, we obtain the following
from the divergence theorem:

Z
�

r� � nd� = 0 (3.34)

Therefore, for (3.32) to have a solution, we can show that
Z

U+L

(� � �0)d� � 0 (3.35)

Equation (3.16) clearly shows that a constant can be added to
�. We can choose this constant�c such that

Z
U+L

(� + �c � �0)d� = 0 (3.36)

Therefore,

�c = �

R
U+L

(� � �0)d�

R
U+L

d�
(3.37)

3.6 The Gradient of F

If (3.32) is substituted into (3.31), then it reduces to

~�T
r�F =

Z
U

2(�� �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(�� �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(� � �0)
2 yx~yx
1 + y2x

d�

�

Z
U+L

�r(~yr� � t) � id�

(3.38)

If we integrate the last integral by parts, then we get

�

Z
U+L

�r(~yr� � t) � id�

=

Z
U+L

(~yr� � t)r� � id�+

Z
U+L

yxyxx ~y

1 + y2x
�r� � td�

=

Z
U

~yp
1 + y2x

(�yxr� � n+ r� � t)r� � td�

+

Z
L

~yp
1 + y2x

(yxr� � n�r� � t)r� � td�

+

Z
U+L

yxyxx ~y

1 + y2x
�r� � td�

(3.39)
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If (3.39) is substituted into (3.38) and rearranged, then we
can write

~�T
r�F

=

Z
U

�
(� � �0)

2~yx + �r� � tyxx~y
� yx
1 + y2x

d�

+

Z
U

[2(�� �0)yx �r� � nyx +r� � t]
r� � t~yp
1 + y2x

d�

+

Z
L

�
(� � �0)

2~yx + �r� � tyxx~y
� yx
1 + y2x

d�

�

Z
L

[2(�� �0)yx �r� � nyx +r� � t]
r� � t~yp
1 + y2x

d�

(3.40)
If we substitute for~y from (3.11), then (3.40) can be written as

~�T
r�F =

KX
k=1

~�Uk �
U

k +
KX
k=1

~�Lk�
L

k (3.41)

where

�Uk =

Z
U

�
(�� �0)

2(fk)x + �r� � tyxxfk
� yx
1 + y2x

d�

+

Z
U

[2(� � �0)yx �r� � nyx +r� � t]r� � tfkp
1 + y2x

d�

(3.42)
and

�Lk =

Z
L

�
(� � �0)

2(fk)x + �r� � tyxxfk
� yx
1 + y2x

d�

�
Z
L

[2(�� �0)yx �r� � nyx +r� � t]r� � tfkp
1 + y2x

d�

(3.43)
Equations (3.42) and (3.43) are the components of the gradient
of F . When � satisfies the state equations (3.16) and�
satisfies the costate equations (3.32), then the components
of the gradient ofF can be evaluated with (3.42) and (3.43).
Becauser�F = 0 at the minimum, we can clearly see that

�Uk = 0
�Lk = 0

)
for k = 1; 2; :::K (3.44)

3.7 A Design Strategy

Figure 3 shows a typical design strategy. In this process,
at some initial conditions the state and adjoint equations are
solved, and the gradient ofF is computed. If the gradient is
equal to 0, then a minimum has been reached and the iteration
is terminated; otherwise, the new descent direction~� and the
step size" are computed, and the design variables are updated.
The iteration is repeated until the gradient vanishes. The cost
of this strategy can be estimated as follows. Let the cost of
solving the state equations be equal toK. The cost of solving
the adjoint equation is at most equal toK. Let the number
of design iterations required beN. Therefore, the total cost
of doing the optimal design is approximately 2KN with N,
at best, equal to the number of design variables. In practice,
especially for nonlinear problems,N is many times the number
of design variables. A factor of 100 is not unrealistic. One
way to bring the total design cost down is to reduce the
magnitude ofK. One of the most practical and proven ways of
achieving this is by using multigrid. Here, a multigrid scheme

is used to relax the state and adjoint equations. At the end
of one or several multigrid cycles, the optimizer is called and
the design variables are updated. In this process, the design
variables are updated only on the finest grid. A schematic of
this strategy is shown in Figure 4.

Relax state equation
Relax adjoint equation

2K

N

αF

∆

Compute 

Is =  0

No

Quit
Yes

Optimizer

α , φ , λ  0        0       0       

αF

∆

Compute  α , ε ~

+ ε ααnαn+1=
~

Figure 3. A design strategy flowchart.

One multigrid cycle

OptimizerFine

Coarse

2h

4h

8h

h

Relax φ , λ

Relax φ , λ

Relax φ , λ

Relax φ , λ

Figure 4. A multigrid strategy.

4. THE ONE-SHOT METHOD

The One-Shotmethod goes one step further by embed-
ding the design process within the multigrid cycles. This
method essentially makesN = 1. Thus, the cost of optimal
design is approximately equal to 2K. In this method, high ef-
ficiency is obtained by exploiting two key phenomena. The
first one is the ability of multigrid to efficiently reduce high-
frequency components of the error due to a perturbation, and
the second one is the nature of propagation of perturbations
in a flow field. These phenomena are explained below.
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4.1 Multigrid Efficiency

In any relaxation (smoothing) process, the high-
frequency error components of the space discretization op-
erator of the differential equation under consideration are
generally damped in a few iterations. The low-frequency
components are the slowest to be damped. Consider a one-
dimensional domain of lengthL discretized intoN cells of
uniform grid spacingh = L=N , where the grid index ranges
from 0 to N . This grid will be referred to as theh grid. If
we assume periodic boundary conditions, then the error at the
nth grid point can be written in Fourier series as

�n =
NX

j=�N

Aje
i�jn (4.1)

whereAj is the amplitude of thejth harmonic andi =
p�1.

The phase angle� can be written as

�j =
j�

N
(4.2)

The phase angle covers the domain(��; �) in increments
of �=N . The value j�j = � corresponds to the highest
frequency that is visible on this grid, namely the frequency
of wavelength2h. If a coarse grid (H grid) is constructed by
removing every other grid point of theh grid, then the highest
frequency that is visible on this grid corresponds toj�j = �=2
(i.e., the frequency of wavelength4h � 2H). Therefore, the
frequencies that correspond to�=2 < j�j � � and are visible
on the h grid cannot be represented on theH grid. These
frequencies are considered to be high frequencies on theh grid
and the relaxation scheme can damp these frequencies in a few
iterations. The remaining frequencies in the spectrum, which
correspond to0 � j�j � �=2 and are well represented on the
H grid, are referred to as low frequencies on theh grid. The
frequencies that are visible on theH grid can also be separated
into high and low frequencies, based on how well they are
represented by the next coarsest grid. The high frequencies
that correspond to theH grid can be damped quickly by a few
iterations of the relaxation scheme on this grid.

In the multigrid method,17,16 high efficiency is obtained
by relaxing the discretized equation on successively coarser
grids, where the high-frequency error components that cor-
respond to each grid are damped efficiently. In the design
process, high efficiency is obtained by changing only those
design variables that produce high-frequency perturbations in
the flow field on any grid. Therefore, the basic premise of
the One Shotmethod, on any grid, is tomake changes in the
design variables that produce high-frequency perturbationsin
the flow field.

4.2 The Effect of Airfoil Perturbation on the Flow Field

The other phenomenon that is exploited by theOne-
Shotmethod has to do with the way in which a disturbance is
propagated in a flow field. In a subsonic flow, for example,
a smooth perturbation is propagated through the entire flow
field and a high-frequency perturbation is felt only in a small
neighborhood around the source of the perturbation. That is,
high-frequency components of the perturbation decay rapidly
away from the source. This phenomenon is illustrated in the
following analysis.

Consider the small-disturbance potential equation in the
half-space0 � y < 1; �1 < x < 1. If the flow is
incompressible, the governing equation is

r2� = 0 (4.3)

and the boundary condition applied aty = 0 is

@�

@y
=

@f

@x
(4.4)

wheref(x) is the shape of the boundary over which the flow
must be determined. If�+~� is the potential due to a change in
shape tof+ ~f , the governing equation for change in potential
~� is

r2 ~� = 0 (4.5)

and the boundary condition aty = 0 is

@ ~�

@y
=

@ ~f

@x
(4.6)

Let
@ ~f

@x
= ei!x (4.7)

where! is the frequency of the perturbation. A solution to the
governing equation (4.5) that satisfies the boundary condition
is

~� = e�j!jyei!x (4.8)

The magnitude of~� is ���~���� = e�j!jy (4.9)

Figure 5, which is the plot of (4.9) for a few select frequencies,

Figure 5.
���~���� versus y.

shows that the region where~� is large becomes thinner as the
frequency increases. Lety� be a location where~� is less
than some small". That is,���~�(!; y�)��� < " = e�� (4.10)

If we substitute for~�, then

e�j!jy
�

= e�� (4.11)
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Therefore,

y� =
� ln (")

j!j (4.12)

Equation (4.12) clearly shows that as the frequency of the
perturbation! increasesy� decreases. Table 1 showsy� for
a few select frequencies when" = 10�4. For the discrete

Table 1. y� versus !

! 1/4 1/2 1 2 4

y� 27.6 13.8 6.9 3.5 1.7

problem, (4.9) can be written as

���~���� = e�(j!jh)(y=h) = e�j�j(j�1) (j = 1; 2; :::J + 1)

(4.13)
where�=J � � � � is the frequency scaled to the grid spac-
ing h. Figure 6 shows the response to different frequencies
for the discrete problem. Table 2 shows the grid locationj�

beyond which
���~���� � 10�4. It shows that the high frequency

perturbations are significantly damped by about the fifth grid
point (j = 0 is the first grid point).

Figure 6.
���~���� versus j.

Table 2. j� versus �

� �=4 �=2 3�=4 �

j� 8.8 4.4 2.9 2.2

In theOne-Shotmethod, a shape function is perturbed on
a grid where it produces high-frequency error components. As
described above, these errors penetrate only a small distance
into the flow field. Hence, they can be quickly damped
by a few relaxations of the discrete equations in a small
neighborhood around the airfoil.

4.3 The Shape Functions

As presented earlier (section 3.3), the airfoil is repre-
sented as follows:

yU;L =
KX
k=1

�U;Lk fk(x) (4.14)

where�Uk and�Lk are the design variables andfk are the shape
functions. As explained in the previous two sections, to ob-
tain high design efficiency, the changes in the design variables
on a grid should produce nonsmooth (high-frequency) pertur-
bations in the flow field. This is achieved by using a set of
orthonormal functions as shape functions. Orthonormal func-
tions are increasingly oscillatory. Each of them is assigned
to a grid where a change in the amplitudes causes nonsmooth
perturbations in the flow field. Often, basis functions that cor-
respond to some known airfoil shape must be used. If these
functions are not orthonormal, the corresponding orthonor-
mal functions can then be determined by a Gram-Schmidt
process.18 A Gram-Schmidt procedure for orthonormalization
can be developed with the property of orthonormal functions,
namely,

1Z
0

fm(x)fn(x)dx = 0 (m 6= n)

1Z
0

f2m(x)dx = 1

(4.15)

Let gk(x) be the functions that are not orthonormal. First, the
orthogonal set�fk(x) is found from the following relations:

�f1(x) = g1(x)

�f2(x) = g2(x) + a21 �f1(x)

:

:

�fk(x) = gk(x) +
k�1X
m=1

akm �fm(x)

:

:

(4.16)

where

akm = �

1R
0

gk(x) �fm(x)dx

1R
0

�f2m(x)dx

(4.17)

Finally, the orthonormal functions are found by normalizing
�fk(x) as follows:

fk =
�fk(x)s

1R
0

�f2k(x)dx

(4.18)

The Gram-Schmidt process described above can be pro-
grammed in symbolic language to find the expressions forfk ,
or it can be implemented by numerical integration, in which
case the shape functions are defined as an array of numbers.
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As an example, consider the NACA 0012 airfoil, defined
by

yU =
4X

k=1

�kgk(x) (0 � x � 1)

yL = �yU
(4.19)

where �k and gk are given in Table 3. The NACA 0012
shape has been slightly modified to ensure that it closes at the
trailing edge. The same shape can be expressed in terms of
the orthonormal functions as

yU =
4X

k=1

�kfk(x) (0 � x � 1)

yL = �yU
(4.20)

where the orthonormal functionsfk of the basis functions and
their corresponding amplitudes�k are given in Table 4. The
orthonormal shape functions are shown in Fig. 7. Note that
the number of zeros offk is equal tok + 1.

Table 3. Shape Functions and
Amplitudes of NACA 0012

k �k gk

1 0:17814
p
x� x

2 0:10128 x(1� x)

3 �0:10968 x2(1� x)

4 0:06090 x3(1� x)

Table 4. Orthonormal shape functions
and amplitudes of NACA 0012

k �k � 104 fk

1 439:474 5:47723g1

2 28:2339 14:7573(g2 � :928571g1)

3 �5:85699 54:7884(g3 � :901236g2

+ :432099g1)

4 2:85283
213:472(g4 � 1:27406g3

+:504011g2 � :164439g1)

Figure 7. Orthonormal shape
functions of NACA 0012 airfoil.

4.4 The One-ShotDesign Strategy

In the One-Shotmethod, the optimizer is embedded
within the multigrid cycle as shown in Figure 8. The de-
sign variables are updated on a level where the correspond-
ing shape functions produce high-frequency error compo-
nents. In general, the low-frequency shape functions are
updated on coarse levels, and higher frequency functions
are updated on finer grids. For example, the design vari-
ables �U1 and �L1 are updated on the coarsest grid8h;
�U1 ; �

U
2 ; �U3 ; �U4 ; �L1 ; �

L
2 ; �L3 , and�L4 are updated on the

next finest grid4h. Some overlap of the design variables is
permitted. Thus,�U1 , and�L1 are updated on grid4h also.
None of the design variables are updated on the finest grid
h. The cost of solving the state or the adjoint equations on a
coarse grid is only one-fourth of the cost of solving them on
the next finest grid. Because the shape functions are perturbed
only on levels where they generate high-frequency errors, a
local relaxation around the airfoil is sufficient to damp out the
errors, which reduces computing costs. Therefore, the overall
cost of the design is dominated by the cost required to solve
the state and adjoint equations on the finest grid. The total
cost of the design process is approximately two to three times
that of one analysis.

One multigrid cycle

Fine

Coarse

2h

4h

8h

h

Relax φ , λ

Relax φ , λ

Relax φ , λ

Relax φ , λ

Update αU, L
1,2, 3, 4

Update αU, L
1

Figure 8. The One-Shot strategy.
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4.5 The Discretization and Solution Procedure

The State Equations

The computational domain is discretized with an O type
of grid. The governing equation and its boundary conditions
cast in curvilinear coordinates are discretized with the finite-
volume approach. The Gauss-Seidel line-relaxation scheme
is used to form the tridiagonal systems of equations in both
curvilinear coordinate directions. These systems are solved
with the Thomas algorithm. Note that the tridiagonal system
is periodic in the direction that is around the airfoil. A FAS
multigrid scheme is used to accelerate the convergence rate of
the solution. The FMG process is used to obtain a good initial
solution on the finest grid. The details of the discretization,
the relaxation, and the multigrid acceleration are given in
Appendix B.

The Adjoint Equations

The adjoint equations are discretized and solved in the
same manner as the state equations. As in the case of the state
equations, a FAS multigrid scheme and the FMG process are
used to accelerate the convergence rate of the solution.

The Gradient ofF

The gradient of the cost function involves only quantities
on the airfoil. These quantities are discretized in a manner
that is consistent with the discretization of the state and adjoint
equations. The gradient is transferred to the coarse grid in a
FAS manner.

Updating the Grid

During the design process, the grid is updated by moving
only the grid points close to the airfoil and linearly decaying
the change at the airfoil in this neighborhood. The outer
boundary of this region is determined as follows. Let

ymax = �max ("~y) (4.23)

where� is an arbitrary constant;� = 10 in this study. Among
the grid lines that go around the airfoil, the one that is nearest
to theymax location is taken to be the outer boundary of the
region within which the grids are changed. The entire grid is
regenerated at the beginning of each FMG stage also. With
this approach, by the time the FMG process reaches the finest
grid, only a few lines around the airfoil must be moved.

5. THE RESULTS

Test Case 1

As our first test problem, we recover the NACA 0012
airfoil shape using the potential distribution obtained from
the analysis of NACA 0012 at an angle of attack of0o and
M1 = 0 as the target potential�0. Figure 9 shows the
computedCp distribution obtained from the analysis run.
A five-level W-cycle multigrid with 128� 64 cells on the
finest grid was used. The FMG process was used to obtain
a good initial approximation for the finest grid. The analysis
converged to machine zero (< 10�10) in 10 multigrid cycles.

Figure 9. Computed Cp distribution for NACA 0012.

The design run was similar to the analysis run. During
the design process, both the state and costate equations were
relaxed at any multigrid level. The shape functions used were
the orthonormal functions based on the NACA 0012 shape
functions. The design variables were distributed such that on
the coarsest level (8� 4) only�U1 and�L1 were updated. On
the next finest level (16� 8), all the design variables (�U;L

1;2;3;4)
were updated. None of the design variables were updated on
the next three levels, including the finest level. Thus, most of
the design overhead was limited to the two coarsest grids. The
FMG process was used to obtain a good initial approximation
of the shape for the finest grid. Figure 10 shows the results
of this run. The residuals of the state and costate equations
and the gradient of the cost function reached machine zero
in 12 multigrid cycles. The cost function at convergence was
equal to 3� 10–13, which indicates that NACA 0012 was
indeed recovered.

Figure 10. Test case 1.
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Test Case 2

For test case 2, we selected the airfoil FX 60–126/1,
a cambered airfoil whose coordinates are tabulated in Ref.
19. Figure 11 shows theCp distribution for this airfoil at
an angle of attack of0o andM1 = 0. This airfoil is not
smooth, which is reflected in the computedCp distribution.
Using this solution as the target, we tried to recover the shape
with the NACA 0012 shape functions. Figure 12 shows the
resulting shape. Although the designed shape did not fall

Figure 11. Computed Cp distribution for FX 60–126/1.

right on top of the target shape, the residuals of the state and
costate equations and the gradient of the cost function reached
machine zero, which indicates that a minimum was reached.
The cost function reached a value of 6� 10–9.

Figure 12. Test case 2.

Next, an experiment was done to see how well the FX
60–126/1 airfoil can be represented with the NACA 0012
shape function. Figure 13 shows the result. The NACA
0012 shape functions clearly do a good job everywhere except
near the trailing edge. The reason why the optimum shape
in the previous experiment does not correspond to the shape

obtained from the shape fitting is not clear; one reason may be
the poor quality of the grid because the airfoil is not smooth.

Figure 13. Shape fitting with
NACA 0012 shape functions.

Test Case 3

A third test was done; this time the fitted airfoil was
used to generate the target potential. This shape is very close
to the FX 60–126/1 airfoil and is smooth because it is based
on smooth shape functions. The result of the design is shown
in figure 14. As expected, the final shape fell on top of the
target shape. The residuals of the state and costate equations
and the gradient of the cost function are shown in figure 15.

Figure 14. Test case 3.

Figure 15. Convergence history.
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The Efficiency of One-Shot Method

Finally, the performance of theOne-Shotmethod with
respect to pure analysis is presented. The efficiency of a
design method is defined as the ratio of the central processing
unit (CPU) time that is required for the complete design
processtD to the CPU time that is required to do one analysis
tA. Figure 16 shows this ratiotD=tA plotted against the
number of grid cells for the last test case. The figure shows
that as the grid becomes finer the cost of design drops in
comparison with the cost of one analysis. For the finest grid
considered here, this ratio dropped below 4. The efficiencies
for the other cases were similar.

Figure 16. Efficiency of the One-Shot Method.

6. CONCLUDING REMARKS

An efficient method for the design of optimal airfoil
shapes has been presented in this paper. This method brings
the cost of the design process to the same order as that of the
analysis problem. It offers great potential in designing optimal
aircraft configurations efficiently at a reasonable computer
cost. However, much work is still required before practical
use can be made of this method.
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Appendix A

The Normal and the Tangent

Let the upper surface of the airfoil be

y � f(x) = 0 (A.1)

If the unit normaln and the unit tangentt are chosen such
that the normal points into the flow field andt � n points
out of the paper, then

n =
�fxi+ jp
1 + f2x

t =
i+ fxjp
1 + f2x

(A.2)
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wherei andj are the unit vectors in thex- andy-directions,
respectively, andfx = df=dx. From (A.2) the following
inverse relations can be written

i = (�fxn+ t)=
p
1 + f2x

j = ( n+ fxt)=
p
1 + f2x

(A.3)

Let the upper surface be perturbed in they-direction such
that the new shape is

�y = f(x) + " ~f(x) (A.4)

The new normal�n and the new tangent�t can be expressed as

i

j

n
t

t

n

y = f(x)

εf(x)
∼

y = f(x)+εf(x)− ∼

Figure 17. Perturbation of upper surface.

�n =
�

�
fx + " ~fx

�
i+ jr

1 +
�
fx + " ~fx

�
2

�t =
i +

�
fx + " ~fx

�
jr

1 +
�
fx + " ~fx

�
2

(A.5)

With some algebraic manipulation we can show that

�n = n� "
~fxp

1 + f2x
t+O

�
"2
�

�t = t+ "
~fxp

1 + f2x
n+O

�
"2
� (A.6)

If the lower surface of the airfoil is given by

y � f(x) = 0 (A.7)

and the normal and the tangent are such thatn points into the
flow and t � n points out of the paper, then

n =
fxi� jp
(1 + f2x)

t =
�i� fxjp
(1 + f2x)

(A.8)

From (A.8), the inverse relation can be written as

i

j

t
n

y = f(x)

Figure 18. Normal and tangent on lower surface.

i = ( fxn� t)=
p
1 + f2x

j = (�n� fxt)=
p
1 + f2x

(A.9)

The new normal and the tangent on the lower surface (per-
turbed in they-direction) are also given by (A.6).

The Infinitesimal Segmentd�

The infinitesimal segmentd� on the original airfoil can
be written as

d�
2 = dx

2 + dy
2

= dx
2 +

�
df

dx

�2
dx

2 + h:o:t

= dx
2
�
1 + f

2
x

�
+ h:o:t

(A.10)

The corresponding infinitesimal segmentd�� on the new airfoil
can be expressed as

d��2 = dx
2 + d�y2

= dx
2

�
1 +

�
fx + " ~fx

�2�
+ h:o:t:

(A.11)

From (A.11) we can show that

d�� = d�

�
1 + "

fx ~fx
1 + f2x

�
+ O

�
"
2
�

(A.12)

A.1 The Gradient of the Cost Function

Let the change in the design variable be such that

�! �+ "~� (A.13)

The resulting airfoil shape�y
�U;�L (Fig. 19) and the correspond-

ing potential �� that satisfies the governing equation and its
boundary conditions in the new domain�
 can be written as

�y
�U;�L(x) = y

U;L(x) + "~yU;L(x) (A.14)

�� = � + "~� (A.15)

The cost function on the original airfoil is

F [�; �(�)] �

Z
U+L

(�� �0)
2
d� (A.16)

On the new airfoil, the cost function can be written as

F
�
�+ "~�; ��

�
=

Z
�U+�L

�
�� � �0

�2
d�� (A.17)

If we use a Taylor series expansion, the potential on the new
airfoil can be shifted to the original airfoil as follows:

��
�U;�L = ��U;L + "~y

�
@ ��

@y

�U;L

+O
�
"
2
�

= �
U;L + "~�U;L + "~y(r� � j)U;L +O

�
"
2
� (A.18)

y

x

~yε

Figure 19. Perturbed airfoil shape.
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If we substitute ford�� from (A.12) and for �� from (A.18)
and use (A.3) and (A.9), (A.17) can be written as

F
�
�+ "~�; ��

�
= F (�;�)

+ "

Z
U

2(� � �0)
yx~yp
1 + y2x

r� � td�

� "

Z
L

2(� � �0)
yx~yp
1 + y2x

r� � td�

+ "

Z
U+L

(�� �0)
2 yx~yx
1 + y2x

d�

+ "

Z
U+L

2(�� �0) ~�d� +O
�
"
2
�

(A.19)
The left-hand side of (A.19) can be expressed as

F
�
�+ "~�; ��

�
= F (�; �) + "~�T

r�F +O
�
"
2
�

(A.20)

where

r�F �
@F

@�
+

�
d�

d�

�T
@F

@�
(A.21)

and r�F are the components of the gradient of the cost
function. If we compare (A.19) and (A.20), we obtain

~�T
r�F =

Z
U

2(� � �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(� � �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(�� �0)
2 yx~yx
1 + y2x

d�

+

Z
U+L

2(�� �0) ~�d�

(A.22)

A.2 The State Equations

The Governing Equation

For incompressible flow, the governing equation in the
domain 
 is

div(r�) = 0 (A.23)

After the airfoil is perturbed, the governing equation in the
new domain�
 is

div
�
r ��
�
= 0 (A.24)

where
�� = �+ "~� (A.25)

In the region that is the intersection of both domains, we can
write

div
�
r ��
�
� div(r�) = 0 (A.26)

From (A.26) we can show that

div

�
r ~�
�
= 0 in 
 \ �
 (A.27)

Therefore, in the limit as" ! 0, we can write

div

�
r ~�
�
= 0 in 
 (A.28)

The Airfoil Boundary Condition

The boundary condition on the airfoil is

r� � n = 0 (A.29)

wheren is the unit normal on the airfoil. If�n is the unit
normal on the new airfoil, then the boundary condition on the
new airfoil can be written as

r

�
�+ "~�

�
� �n = 0 (A.30)

With (A.6) and (A.18), the boundary condition on the new
airfoil, shifted to the original airfoil, can be written as

r

�
�+ "~� + "~yr� � j

�
�

 
n� "

~yxp
1 + y2x

t

!
+O

�
"
2
�
= 0

(A.31)
If we expand (A.31), substitute (A.29), and neglect the high-
order terms, we can write

r~� � n = �r(~yr� � j) � n+
~yxp
1 + y2x

r� � t (A.32)

Note that (A.32) is true on the original airfoil.

With (A.2), (A.3), (A.8), (A.9) and the boundary condi-
tion (A.29) we can show that

r~� � n = r(~yr� � t) � i�
~yp

1 + y2x
r
2
� on U

r~� � n = r(~yr� � t) � i +
~yp

1 + y2x
r
2
� on L

(A.33)
Becauser2� = 0 (the governing equation), we can write

r~� � n = r(~yr� � t) � i on the airfoil (A.34)

The Far-Field Boundary Condition

At the far field,

r� � n = U1 � n+
�

2�
r� � n (A.35)

wheren is the unit normal on the far-field boundary. After
the perturbation, we can write

r

�
� + "~�

�
� n = U1 � n+

�+ "~�

2�
r� � n (A.36)

If we subtract (A.35) from (A.36), we obtain

r~� � n =
~�

2�
r� � n (A.37)

The Cut

Along the cut

�
T
� �

B = � (A.38)

where
� = �

T
t:e: � �

B
t:e: (A.39)

After the perturbation,�
�+ "~�

�T
�

�
� + "~�

�B
= �+ "~� (A.40)

From (A.38) through (A.40), we obtain

~�T � ~�B = ~� (A.41)

where
~� = ~�Tt:e: � ~�Bt:e: (A.42)
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A.3 Summary

From the cost function, we get

~�T
r�F =

Z
U

2(� � �0)
yx~yp
1 + y2x

r� � td�

�

Z
L

2(� � �0)
yx~yp
1 + y2x

r� � td�

+

Z
U+L

(�� �0)
2 yx~yx
1 + y2x

d�

+

Z
U+L

2(�� �0) ~�d�

(A.43)

where"~� are the changes in the design variables andr�F

are the components of the gradient of the cost function.

From the state equations, we obtain

div

�
r ~�
�
= 0 in 


r~� � n = r(~yr� � t) � i on the airfoil

r~� � n =
~�

2�
r� � n at the far �eld

~�T � ~�B = ~� along the cut

(A.44)

where
~� = ~�Tt:e: � ~�Bt:e: (A.45)

Because

div

�
r ~�
�
= 0 in 
 (A.46)

then ZZ



div

�
r~�

�
d
 = 0 (A.47)

If we use the divergence theorem, then we can write

ZZ



div

�
r ~�

�
d
 =

Z
�

r~� � nd� = 0 (A.48)

where� denotes the boundary of
. Equation (A.48) implies
that in order for (A.44) to have a solution

~�

2�

Z
O

r� � nd� +

Z
U+L

r(~yr� � t) � id� = 0 (A.49)

These integrals can be easily shown to be equal to 0.

Appendix B

Presented here is the discretization and the solution pro-
cedure for the governing equations and the boundary condi-
tions. Note that the compressible full potential equations are
considered here.

B.1 The Grid

An O type of grid is used to discretize the computational
domain. The grid lines form a set of curvilinear coordinates
(�; �), where

� = �(x; y)

� = �(x; y)
(B.1)

The �-direction is clockwise around the airfoil, and the�-
direction is radial away from the airfoil. Figure. 20 shows
a coarse schematic of an O type of grid. The cells in the�-
direction run from 1 toI, and cells in the�-direction run from
1 to J. The grid-linej = 1=2 from i = 1=2 to i = I + 1=2
represents the airfoil. Not shown are the ghost cells around
the boundaries of the domain, where the boundary conditions
are applied.

y

x

ξ
η1,1

I,1

1,J

I,J

i,j

Figure 20. The grid.

B.2 The Governing Equation

The governing equation is discretized with the finite-
volume approach. The velocity potential� is a cell-average
value and is located at the cell center(i; j). The fluxes at the
cell faces are evaluated with central differences. Hence, this
discretization is effective only for subsonic flows. In the gen-
eralized curvilinear coordinate system(�;�), the compressible
full potential equation (3.1) can be written as

@

@�

�
�
U

J

�
+

@

@�

�
�
V

J

�
= 0 (B.2)

where

� =

�
1 �

 � 1

2
M 2
1

�
�2x + �2y � 1

�� 1

�1

(B.3)

is the density and

U = �x�x + �y�y

V = �x�x + �y�y
(B.4)

are the contravariant velocity components;�x, �y, �x, and
�y are the metric coefficients; andJ is the Jacobian of
the transformation. Note thatJ is also used to denote the
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outermost cell in the�-direction. The velocity components
�x and �y can be expressed as

�x = ���x + ���x

�y = ���y + ���y
(B.5)

If the inverse of the transformationx = x(�; �) and y =
y(�; �) is known, the metric coefficients and the Jacobian can
be expressed as

�x = Jy�

�y = �Jx�

�x = �Jy�

�y = Jx�

(B.6)

J = 1=(x�y� � x�y�) (B.7)

Figure 21 shows a typical cell in the flow field. The coor-

i, jη ξ

x

y

i, j-1/2

i, j+ 1/2 i+1/2, j

i-1/2, j

Figure 21. A cell in flow field.

dinates of the vertices of the cell are known from the grid
generation. That is,

x = x

�
i �

1

2
; j �

1

2

�

y = y

�
i�

1

2
; j �

1

2

� (B.8)

By choosing�� = �� = 1, a finite-volume discretization of
the governing equation (B.2) for the cell(i; j) can be written
as
�
�U

J

�
i+ 1

2
;j

�

�
�U

J

�
i� 1

2
;j

+

�
�V

J

�
i;j+ 1

2

�

�
�V

J

�
i;j� 1

2

= 0

(B.9)
Equation (B.9) is a consistent approximation to the integral
form of the full potential equation.

Consider the first term in (B.9). If we substitute from
(B.4) and (B.6), then we can write

�
�U

J

�
i+ 1

2
;j

= �i+ 1

2
;j(y��x � x��y)i+ 1

2
;j (B.10)

where

(x�)i+ 1

2
;j = xi+ 1

2
;j+ 1

2

� xi+ 1

2
;j� 1

2

(B.11)

The evaluation ofy� is similar. If we use (B.6), then the
velocity components given by (B.5) can be written as

�x = �J �y��� � �J �y���

�y = � �J �x��� + �J �x���
(B.12)

The bars over the metric coefficients and the Jacobian indicate
that they are evaluated with some mean values ofx and y.

To ensure that the numerical discretization satisfies a uniform
flow field identically, (B.12) is discretized as

(��)i+ 1

2
;j = �i+1;j � �i;j

(�� )i+ 1

2
;j =

1

4
(�i+1;j+1 � �i+1;j�1 + �i;j+1 � �i;j�1)

(B.13)
and

(�x�)i+ 1

2
;j = xi+1;j � xi;j

(�x�)i+ 1

2
;j =

1

4
(xi+1;j+1 � xi+1;j�1 + xi;j+1 � xi;j�1)

(B.14)
where

xi;j =
1

4

�
xi� 1

2
;j� 1

2

+ xi+ 1

2
;j� 1

2

+ xi+ 1

2
;j+ 1

2

+ xi� 1

2
;j+ 1

2

�
(B.15)

Evaluation of�y� and �y� are similar. �J is evaluated as

�J = 1=(�x� �y� � �x� �y�) (B.16)

Similarly, we can write

�
�
V

J

�
i;j+ 1

2

= �i;j+ 1

2

(�y��x + x��y)i;j+ 1

2

(B.17)

where

(x�)i;j+ 1

2

= xi+ 1

2
;j+1

2

� xi� 1

2
;j+ 1

2

(B.18)

and y� is evaluated similarly. The various pieces of the
velocity components given by (B.12) are discretized as

(��)i;j+ 1

2

=
1

4
(�i+1;j+1 � �i�1;j+1 + �i+1;j � �i�1;j)

(�� )i;j+ 1

2

= �i;j+1 � �i;j
(B.19)

and

(�x�)i;j+ 1

2

=
1

4
(xi+1;j+1 � xi�1;j+1 + xi+1;j � xi�1;j)

(�x�)i;j+ 1

2

= xi;j+1 � xi;j
(B.20)

where xi;j is given by (B.15). Similarly,�y� and �y� are
evaluated.

B.3 The Boundary Conditions

The boundary conditions are imposed with one set of
ghost cells around the computational domain. For the cells
adjacent to the airfoil(i; 1), the metric coefficients except
(�x�)i+1=2;1 are computed as

(�x�)i+ 1

2
;1 = xi+ 1

2
;3
2

� xi+ 1

2
;1
2

(�x�)i; 1
2

= xi+ 1

2
;1
2

� xi� 1

2
; 1
2

(�x�)i; 1
2

=
1

2

�
xi+ 1

2
; 3
2

� xi+ 1

2
; 1
2

+ xi� 1

2
;3
2

� xi� 1

2
; 1
2

�
(B.21)

Similarly, the corresponding metric coefficients that are func-
tions of y are also evaluated.
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The Airfoil

If we use (3.2), (B.4), and (B.6), then we can write that
(on the airfoil)

(r� � n)
q�

x2� + y2�
�
=

V

J
= 0 (B.22)

Figure 22 shows a ghost cell adjacent to the airfoil. The

η

ξ

Airfo
il s

egment

Ghost cell

i, 1

i, 1/2

i, 0

Figure 22. Ghost cell adjacent to airfoil.

value of �i;0 is set such that

�
V

J

�
i; 1
2

= 0 (B.23)

The Far Field

Figure 23 shows a ghost cell adjacent to the far-field
boundary. Similar to (B.22), we can show from (3.9) that at
the far-field boundary

V

J
=

�
U1 � n +

�

2�
r� � n

�q�
x2� + y2�

�
(B.24)

The value of�i;J+1 is set such that

�
V

J

�
i;J+ 1

2

=

�
U1 � n+

�

2�
r� � n

�
i;J+ 1

2

q�
x2� + y2�

�
i;J+ 1

2

(B.25)
The value of the circulation� is given by (refer to Appendix
C for details)

� = �I;1 � �1;1 (B.26)

η

ξ
i, J

Ghost cell

Far fie
ld boundary

    s
egment

i, J+1

i, J+1/2

Figure 23. Ghost cell adjacent to far-field boundary.
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ξ
η

Bottom side
Top side

I, j
Trailing edge

1, j

Cutξ

η

Top side
I, j

I+ 1, j

0, j

Cut

ξ
η

Bottom side

1, j

Figure 24. Ghost cells along cut.

The Cut

Figure 24 shows the ghost cells along the top and bottom
sides of the cut. The potential along the cut has a jump
prescribed by (B.26). However, because the gradient of the
potential normal to the cut must be continuous, the potential
in these ghost cells is set as follows:

�0;j = �I;j � �

�I+1;j = �1;j + �
(B.27)

B.4 The Solution Procedure

The discrete equations are solved with a Gauss-Seidel
line-relaxation scheme. The nonlinearity introduced by the
density � is handled by lagging its value by one iteration.
Two systems of tridiagonal equations, one implicit in the�-
direction and the other implicit in the�-direction, are solved
sequentially with the Thomas algorithm. Note that the tridi-
agonal system implicit in the�-direction is periodic. A full
approximation scheme (FAS) multigrid is used to accelerate
the rate of convergence. Line relaxation is used to avoid the
degradation in the performance of the multigrid scheme be-
cause of the presence of grid cells with large aspect ratios.

B.5 The Multigrid Acceleration

A multigrid scheme is used to accelerate the conver-
gence rate of the governing equations. In the multigrid
process, starting with the fine grid, the problem is solved on
a succession of increasingly coarser grids, and the corrections
�� from the coarser grids are successively transferred back to
the fine grid to obtain a new approximation to the solution. In
this process, the component of the error that appears as a high
frequency on a grid is damped very quickly by the iteration
on that grid. Thus, low-frequency components of the error
are damped on coarser grids, and the high-frequency compo-
nents are damped on finer grids. This property of the multi-
grid is exploited by theOne-Shotmethod during the design
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Figure 25. Location of � in fine and coarse grids.

process. Because the full potential equations are nonlinear, a
FAS multigrid is used.

A two grid FAS multigrid algorithm is presented below.
Let the fine grid on which solution is sought be represented
by h and the coarse grid be represented byH . Also, let h
and H represent grid sizes, whereH > h. A coarse grid
can be built by removing every second grid point from a fine
grid. This makesH = 2h. For the cell-centered scheme, this
method of coarsening combines four fine grid cells to form a
coarse grid cell. Figure 25 shows the location of�h and�H

on a fine and a coarse grid, respectively. Now, consider the
following problem on gridh:

L
h
�
�h

�
= R

h (B.28)

whereLh
�
�h

�
is a nonlinear equation andRh is its right-

hand side. Equation (B.28) represents the discretized full
potential equation or any of the boundary conditions. After
a few relaxations of (B.28) on gridh, if we assume that
the remaining error is smooth enough to be approximated
on a coarse grid, then� and its residuals are transferred to
the coarse gridH and an equivalent coarse grid problem is
solved on this grid. The equivalent coarse grid problem can
be written as

L
H
�
�H

�
= R

H (B.29)

where

R
H = IHh

h
R

h
�L

h
�
�h

�i
+ L

H
�
�IHh �

h
�

(B.30)

and�IHh and IHh are the restriction operators that transfer�h

and its residuals to the coarse grid. Equation (B.29) is solved
on the coarse grid, and the corrections��H are transferred
back to the fine gridh to update�h as follows:

�hNew = �hOld + IhH��
H (B.31)

where
��H = �H � IHh �

h (B.32)

and IhH is the interpolation operator that transfers the cor-
rections to the fine grid. This process is repeated until the
residual of (B.28) reaches machine zero.

In the two-grid algorithm described above, we assume
that the solution to (B.29) is accurate. In the multigrid
algorithm, the solution on gridH is obtained by another two-
grid iteration, whereH is the fine grid and2H = 4h is the
coarse grid. If this process is repeated this process on grid2H
and so on, the “exact” solution is obtained on a very coarse
grid. The sequence in which the transfer and relaxation are

performed between successive grids is done in various ways.
Two of the more popular methods, V cycle and W cycle,
are shown in Fig. 26. The V cycle consists of a sequence
of relaxation and transfer to coarser grids with the “exact”
resolution on the coarsest grid, followed by a sequence of
relaxation and transfer back to the finest grid. In the Coarser
levels are visited more often in the W cycle than in the V
cycle. The W cycle, although 50 percent more expensive
than V cycle, is more robust.

V cycle W cycle

Relaxation
Exact resolution

h

2h

4h

8h

Figure 26. Multigrid cycling strategies.

Appendix C

The Kutta condition states that the circulation� around
the airfoil should be such that

the velocity is finite and continuous at the trailing edge.

The value of� is determined by requiring that the velocity
that is perpendicular to the trailing edge bisector be equal
to 0 at the trailing edge. In Fig. 27, letut and un be the

x,u

y,v

ξ
η

n
t

δ

δ

un

ut

V

Trailing
edge

Bisector

Cut

Figure 27. Velocity at trailing edge.

velocity components along the cut and perpendicular to the
cut, respectively. Let the unit vectors in the corresponding
directions bet and n, respectively. Let� be the angle
between the trailing edge bisector and the cut. The velocityV
perpendicular to the trailing-edge bisector, can be written as

V = un cos � + ut sin � (C.1)

where
un = (u; v) � n

ut = (u; v) � t
(C.2)

As shown in Appendix B, the Cartesian velocity components
u and v can be expressed as

u = �x = +J(y��� � y��� )

v = �y = �J(x��� � x���)
(C.3)

and the unit vectors can be expressed as

n = (y�=r;�x�=r)

t = (x�=r; y�=r)
(C.4)
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where
r =

q
x2� + y2� (C.5)

If we substitute (C.2) through (C.5) into (C.1), it can be
written as

V =
�
J
�
x2� + y2�

�
�� � J(x�x� + y�y�)��

�cos �
r

+ ��
sin �

r

(C.6)

To satisfy the Kutta condition, we require thatV = 0. That is,

�� +

"
�J(x�x� + y�y�) + tan �

J
�
x2� + y2�

�
#
�� = 0 (C.7)

If the cut is aligned with the trailing edge bisector, then� = 0.
If the grid is orthogonal, thenx�x� +y�y� = 0. Therefore, if

the grid is orthogonal and the trailing-edge bisector is aligned
with the cut, then (C.7) reduces to

�� = 0 (C.8)

or
�Tt:e: �

�
�Bt:e: + �

�
= 0 (C.9)

where T and B refer to the top and bottom sides of the cut,
respectively (see Fig. 1) andt.e. stands for the trailing edge.
The value of� is easily obtained from (C.9).

In practice, particularly while designing an airfoil, the
grid is not orthogonal nor is the trailing edge bisector aligned
with the cut. However, numerical experiments have shown
that the effect of the second term in (C.7) is of high order.
Hence, a good approximation for the value of� can be
obtained from (C.9).
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